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Abstract—Continuum kinetic models, such as Maxwell-
Boltzmann, present a viable alternative to particle-in-cell (PIC)
models because they can be cast in conservation form and
are not susceptible to noise. By treating the associated phase
space distribution function as a continuous incompressible fluid
occupying a volume of position-velocity space, evolution of the
distribution function is determined by solving a 6-D advection
equation. In cases where collision terms are negligible, the
Boltzmann model is reduced to a Vlasov model. A 4th-order
accurate continuum kinetic Vlasov model has been developed
in one spatial and one velocity dimension to address the chal-
lenges associated with solving a hyperbolic governing equation
in multidimensional phase space. The governing equation is
cast in conservation law form and solved with a finite volume
representation. Adaptive mesh refinement (AMR) is used to allow
for efficient use of computational resources while maintaining
desired levels of resolution. Consequently, with AMR the model is
able to capture the fine structures that develop in the distribution
function as it evolves in time, while using low resolution in the
tail of the distribution function. The model is tested on several
plasma phenomena including: weak and strong Landau damping
and the two-stream instability. Conservation properties of the
method are investigated.

I. INTRODUCTION

In statistical plasma kinetic theory, each particle species is
treated as a distribution function evolving in position-velocity
phase space. For a collisionless plasma, the evolution is
described by a coupled system of partial differential equations:
the Vlasov equation and Maxwell’s equations. When solved in
its most general form, this model has six dimensions — three
spatial coordinates and three velocity coordinates — thereby
making it computationally costly. For this reason, particle-in-
cell (PIC) methods, which rely on sampling the distribution
function, have been the dominant means of solving this system.
Due to recent advancements in supercomputing technology,
however, full phase-space continuum methods have garnered
more attention and have become a viable means of simulating
nonlinear plasma kinetics. [2], [3], [4], [1], [7]

Continuum methods are advantageous because they can be
cast in conservation-law form and thereby be solved using
flux-based techniques that have been well-developed in the
field of hyperbolic partial differential equations. Hyperbolic
solvers also allow for: straightforward parallelization based on
domain decomposition; the use of adaptive mesh refinement
(AMR) techniques; and numerical methods that are high-order

accurate in space and time.[2] Parallel AMR can, in particular,
be used to reduce the cost of a continuum multi-dimensional
Vlasov simulation by focusing computational resources in
dynamic parts of the domain. Moreover, continuum methods
do not suffer from sampling-associated noise seen in PIC
methods [9] and can thus produce more physically accurate
results.

The content of this paper investigates a high-order accu-
rate numerical method for modeling the electrostatic regime
represented by the Vlasov-Poisson system in one spatial and
one velocity dimension. The unsplit finite volume method
is fourth-order accurate in time and space and solves the
system of equations in conservation-law form. The method
is benchmarked against analytic results for weak Landau
damping, strong Landau damping, and two-stream instability
evolution. Its conservation properties are assessed and results
with adaptive mesh refinement are presented.

II. VLASOV-POISSON SYSTEM AND UNDERLYING
ASSUMPTIONS

Plasma evolution timescales over which electrons are dy-
namic and ions remain static are considered. In such a system
there is only one evolving distribution function f(x, v, t) —
that of the electrons. Assuming collisions have negligible
effect means the plasma kinetics can be modeled by the Vlasov
equation [8] in conservation-law form:

0 =
∂f

∂t
+

∂

∂x
(vf)− e

m

∂

∂v
(Ef) , (1)

where f is the distribution function, t is time, x is the phase
space position coordinate, v is the phase space x-direction
velocity coordinate, e is the absolute value of electron charge,
m is the electron mass, and E is the electric field in the x-
direction. In Eq. 1 only electrostatic forces are considered such
that currents and magnetic fields are assumed to be negligible.
The electric potential, φ, is calculated using Poisson’s equation
in one dimension,

∂2φ

∂x2
= −ρc

ε0
, (2)

where ρc is the charge density and ε0 is the vacuum permit-
tivity. Note that the electric field is related to the gradient of
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the potential: E = −∇φ. The charge density is defined as

ρc(x) = e

[
1−

∫ ∞
−∞

f(x, v, t)dv

]
(3)

Because the system is assumed to be non-relativistic, the
range over which velocity is defined is unbounded, meaning
in theory that v ∈ (−∞,∞). In practice, i.e. in numerical
simulations, the velocity is bounded by some sufficiently high
value vmax such that v ∈ [−vmax, vmax]. The value of vmax

is set such that f(x,±vmax)|t=0 is zero to machine precision.
The distribution function f(x, v, t) is normalized such that the
net charge density over the entire spatial domain is zero.

The kinetic energy and potential energy for the Vlasov-
Poisson system are defined as follows [5]

KE =
1

2
m

∫ ∫
v2fdvdx (4)

PE =
1

2
ε0

∫
E2dx. (5)

The values of kinetic and potential energy provide a useful
means of comparing results of numerical simulations to theo-
retical predictions. The values of energy also provide a metric
by which to evaluate conservation properties of the Vlasov-
Poisson solver.

III. DISCRETIZATION AND INTEGRATION IN TIME

A fourth-order finite volume method is employed to advance
the solution f(x, v) in time. This is done by first initializing
the distribution function by a fourth-order cell-average of the
analytic initial condition, f0, at discrete set of points i, j,
denoting the spatial and velocity index, respectively. Thus at
time t = 0 the cell-average distribution function to fourth order
is

〈f〉i,j =f0(ihx, jhv) +
h2x
24

∂2f0
∂x2

+
h2v
24

∂2f0
∂v2

. (6)

Note that 〈·〉 denotes the average value over a cell

〈f〉i,j =
1

hxhv

∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hv

(j− 1
2 )hv

f(x, v)dvdx (7)

and hx and hv refer to cell widths in the x and v directions.
The second derivative terms on the right hand side of Eq. 6
are defined using a second-order accurate centered difference
stencil

∂2f0
∂v2

=
fi,j+1 − 2fi,j + fi,j−1

h2v
(8)

∂2f0
∂x2

=
fi+1,j − 2fi,j + fi−1,j

h2x
. (9)

The value of the cell-average potential 〈φ〉i is computed from a
fourth-order finite volume stencil for the Poisson equation [10]

− 1

ε0
〈ρc〉ih2x =− 1

12
〈φ〉i+2 +

4

3
〈φ〉i+1 −

5

2
〈φ〉i

+
4

3
〈φ〉i−1 −

1

12
〈φ〉i−2,

(10)

where 〈ρc〉i is defined in terms of the zeroth moment of the
cell-average distribution,

〈ρc〉i = 1− hv
∑
j

〈f〉i,j . (11)

The cell-average electric field is computed from the potential:

〈E〉i =−
8

12hx

(
〈φ〉i+1 − 〈φ〉i−1

)
+

1

12hx

(
〈φ〉i+2 − 〈φ〉i−2

)
.

(12)

To advance the solution 〈f〉i,j in time, it is necessary to
calculate the distribution function flux entering each cell face
of cell i, j. Based on the velocity and the electric field, the
fourth-order accurate fluxes are calculated as follows:

〈fv〉i+ 1
2 ,j

=〈f〉i+ 1
2 ,j
〈v〉i+ 1

2 ,j

+
hv
24

(
〈f〉i+ 1

2 ,j+1 − 〈f〉i+ 1
2 ,j−1

)
(13)

〈fE〉i,j+ 1
2
=〈f〉i,j+ 1

2
〈E〉i,j+ 1

2

+
1

48

(
〈f〉i+1,j+ 1

2
− 〈f〉i−1,j+ 1

2

)
(14)

·
(
Ei+1,j+ 1

2
− Ei−1,j+ 1

2

)
Once the values of flux at each cell face are known, the Vlasov
equation is reduced to an ordinary differential equation:

d〈f〉i,j
dt

=− 1

hx

[
〈fv〉i+ 1

2 ,j
− 〈fv〉i− 1

2 ,j

]
+

e

m

1

hv

[
〈fE〉i,j+ 1

2
− 〈fE〉i,j− 1

2

]
.

(15)

Eq. 15 is integrated in time using a fourth-order explicit
Runge-Kutta algorithm to advance 〈f〉i,j by a time step.
The updated cell-average distribution function is then used to
compute the electric field, and thus to advance the solution.
This amounts to a fourth-order accurate discretization in time
and space, using centered differencing for the latter.

IV. SINGLE-GRID SIMULATION RESULTS

The single grid algorithm described in the previous section
is benchmarked against analytic results from kinetic theory.
A standard test case is to simulate weak Landau damping by
initializing a Maxwellian distribution in velocity space with a
small position-dependent perturbation:

f(x, v)|t=0 =
1√
2π

exp

(
−v

2

2

)
(1 + a cos(kx)) , (16)

with k = 0.5 and a = 0.01. In weak Landau damping,
potential energy (see Eq. 5) is transformed into thermal energy
as indicated by a steady net decrease in the value of the former.
The simulated decay rate of potential energy in time is in
good agreement with the theoretical prediction, as shown in
Fig. 1(a).

To test a non-linear regime of plasma kinetics, the simula-
tion is benchmarked against theoretical predictions for strong
Landau damping. In strong Landau damping, the Maxwellian
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(a) Weak Landau damping
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(b) Strong Landau damping

Fig. 1: Simulation results for (a) weak Landau damping and
(b) strong Landau damping using a 256 × 256 grid. The
evolution of potential energy demonstrates close agreement
with theoretical predictions.

in Eq. 16 is given a large perturbation with amplitude a = 0.5.
In this case, the potential energy in the system evolves non-
linearly. This evolution is shown in Fig. 1(b), where the decay
and growth rates in potential energy from the simulation are
shown in comparison with theoretical predictions.

The algorithm is also used to simulate the two-stream
instability. This simulation is initialized using the following
distribution function

f(x, v)|t=0 =
1√
2π
v2 exp

(
−v

2

2

)
(1 + a cos(kx)) (17)

with k = 0.5 and a = 0.01. The spatial perturbation results in
inhomogeneities in the electron distribution such that kinetic
energy is converted into potential energy. Fig. 2 shows how

Fig. 2: Evolution of the two-stream instability for normalized
time tn = 0, 18.8, 20.4, 29.8. Note that at approximately t =
18.8 the instability becomes non-linear.
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Fig. 3: The two-stream instability results demonstrate close
agreement with theoretical predictions for the instability
growth rate.

the electrons become trapped, as is evidenced by the formation
of a vortex-like structure in the phase space distribution. It is
important to note that dispersive effects, which can be seen
at time t = 29.8, cause the distribution function to become
negative in certain parts of the domain. This is an unphysical
result that can be resolved through the use of limiters. When
compared to linear theory, the growth rate in the potential
energy resulting from the simulation is consistent with the
theoretically predicted value for the two-stream instability, as
shown in Fig. 3.
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Fig. 4: Two-stream instability at t = 22.1. AMR simulation
with 64 × 64 base grid, three levels of grid refinement, and
a refinement ratio of four. Thus the smallest boxes indicate
regions of the domain that have sixteen times the resolution
of the coarsest grid.

.

V. TWO-STREAM INSTABILITY WITH AMR

Adaptive mesh refinement is implemented into the single-
grid algorithm described above, using the techniques described
in Ref. [6]. As indicated in Eq. 3, the charge density is
computed by taking a velocity moment of the distribution
function at each spatial location. To do this on multiple levels
of grids requires that additional interpolation steps be added
to the AMR algorithm.

First a coarse-grid number density is computed using the
coarse cell-average distribution function. The coarse grid
number density is interpolated to the fine grid. In order to
get the most accurate value of number density, the integral
contribution from fine grid must be included. This is done by
taking the difference between the coarse and fine distribution
functions in regions where the fine grid exists, and integrating
this difference with respect to v. This position-dependent
contribution is then added to the interpolated coarse grid
number density in spatial regions where the fine grid exists.

As a demonstration of adaptive mesh refinement capability,
the two-stream instability is simulated using a three-level
adaptively refined grid. The distribution function and grid are
shown at time t = 22.1 in Fig. 4. The simulation uses a base
grid of size 64× 64 with a factor of four refinement for each
successive level. Further analysis is required to evaluate the
merits of AMR and to determine to what extent it reduces the
computational cost of Vlasov-Poisson simulations.
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0 20 40 60 80
10

−15

10
−10

10
−5

 
Normalized Time (t

n
 = t ω

p
)

∆
 (

K
E

+
P

E
)

 

 

  64x64 grid simulation

128x128 grid simulation

256x256 grid simulation

(c) Energy change relative to total energy at t = 0

Fig. 5: Absolute values of mass, momentum and energy for
weak Landau damping. Mass is conserved to 10−13 precision,
momentum is conserved to machine precision, and total energy
conservation depends on the grid resolution.
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VI. CONSERVATION PROPERTIES

The conservation properties of the described algorithm are
investigated by tracking the value of the zeroth, first, and
second velocity moment of the distribution function (inte-
grated over the entire domain) as a function of time. These
integrals amount to conservation of mass, momentum and
energy. Theoretically the value of each should be conserved
to machine precision, but in practice numerical errors are
introduced through the fourth-order approximation to the
partial differential equation. Fig. 5 shows to what extent the
mass, momentum, and energy of the system are conserved
for the case of weak Landau damping. The zeroth moment
is preserved to 10−13 independent of the grid resolution. The
first moment is zero to machine precision, and its value is also
independent of grid resolution. The second moment, as mea-
sured by the change in total energy relative to the initial value
at t = 0, attains a value that is several orders of magnitude
greater than machine precision. The second moment remains
bounded for all time, and fourth-order convergence of the
numerical method is demonstrated by the fact that the change
in total energy decreases by a factor of approximately sixteen
as the grid resolution is doubled in x and v. Conservation
properties for non-linear plasma phenomena require further
investigation.

VII. CONCLUSIONS

A fourth order accurate algorithm in space and time has
been developed to solve the Vlasov-Poisson system in one
spatial and one velocity dimension. The simulation results
demonstrate close agreement with theoretical predictions, as
tested on weak Landau damping, strong Landau damping, and
the two-stream instability. AMR is also demonstrated as a
practical means of reducing computational cost by focusing
computational resources in dynamic regions of the domain.
Further work needs to be done to assess the speed-up offered
by adaptive mesh refinement, specifically as it applies in multi-
ple dimensions. The described algorithm will also benefit from
the use of limiters, which will address dispersive oscillations
and lack of positivity preservation that are inherent to high-
order finite volume calculations.
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